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1. More Experimental Results
1.1. Computational Complexity Comparison

We present the computational complexity (multiple-accumulate operations, MACs), network parameters, and processing time
for input images of resolution 512 x 512 x 3, coupled with the average low-light enhancement performance on LOL [[18} 21]
and MIT [[1]] in Tab.[I] These images are processed using a Tesla M40 with an Intel(R) Xeon(R) CPU E5-2690 v4 @ 2.60GHz.

Both our full and lightweight versions exhibit superior performance in enhancing low-light conditions compared to previ-
ous methods. Moreover, our lightweight version stands out by requiring fewer computational resources than most state-of-
the-art methods.

Table 1. Benchmarking results for low-light enhancement. Among unsupervised methods, we highlight the top-ranking scores in red, the
second in blue, the third in green. Additionally, we denote the training set used by each model. “LOL+” indicates a fusion of LOL and
other datasets.

Datasets ‘ Train Set ‘ Average on LOL [18}121]] and MIT [1] ‘ Computational Complexity
Metrics | | PSNRT SSIMt LPIPS| LOE] | MACs Params  Time (s)
Retinex-Net [18§]] LOL 14.24 0.545 0.396 0.295 8728G 55521k  0.0931
KinD++ [26] LOL 16.20 0.656 0.365 0232 | 258.62G 827M 0.6935
KinD [23] LOL 17.46 0.785 0.162 0210 | 159.56G  8.02M 0.0964
Supervised URetinex-Net [19] LOL 17.51 0.794 0.143 0.216 2290G  340.11k  0.2477
Retinexformer [2] MIT 18.98 0.666 0.214 0.221 68.39 G 1.61 M 0.3096
Retinexformer [2] LOL 21.18 0.785 0.170 0.240 68.39 G 1.61M 0.3096
DiffLL [6] LOL+ 22.17 0.795 0.173 0.233 21.88G  22.08 M 0.3399
RUAS [13] FACE 10.03 0.411 0.528 0.345 950.8 M 3.438k 0.0189
RUAS [13] LOL 10.31 0.431 0.487 0.364 950.8 M 3.438k 0.0189
RUAS [13] MIT 11.58 0.536 0.324 0.282 950.8 M 3.438k 0.0189
SCI [15] LOL+ 12.40 0.553 0.336 0.238 95.16 M 0.258 k 0.0018
SCI [15] FACE 13.88 0.614 0.297 0.251 95.16 M 0.258 k 0.0018
ZeroDCE++ [10] own data 14.68 0.426 0.297 0.404 20.37M 10.56 k 0.0023
PairLIE [3] LOL+ 15.12 0.708 0.254 0.251 89.99G 34177k  0.0562
Unsupervised ExCNet [24] test images 15.25 0.587 0.288 0.246 - 8.27M 14.615
ZeroDCE [4] own data 15.59 0.649 0.258 0.243 20.92 G 79.42 k 0.0155
CLIP-LIT [11] own data 1591 0.653 0.265 0.257 73.04G 27879k  0.0543
EnlightenGAN [[7]] own data 15.93 0.719 0.253 0.245 65.88 G 8.64 M 0.0295
SCI [15] MIT 16.29 0.595 0.252 0.226 95.16 M 0.258 k 0.0018
NeRCo [20] LSRW [5] 18.50 0.744 0.237 0.262 8228G  2330M 0.9490
Ours Lightweight | COCO [12]+LOL 19.30 0.784 0.233 0.224 9.83 G 32736k 0.0238
Ours Full COCO [12] 19.41 0.797 0.182 0.234 - 1.313B 9.9616

1.2. Comparative Analysis: SCI with Varied Hyper-parameters and Training Data

We present low-light enhancement results of SCI [[15] trained on different datasets: LOL [18]], MIT [1]], and FACE [22]. The
training loss of SCI is given by Ly = aLy + BLs; more details can be found in [15]. We also demonstrate results under
various « values with 5 = 1.

As shown in Fig.[] all versions of SCI struggle to enhance the extremely dark image in the first row. In the unbalanced
case in the second row, all SCI versions either overly enhance the sky or fail to enhance the tree. In the daytime scenario in
the third row, SCI-MIT, SCI-LOL, SCI-FACE, SCI-MIT « = 10, and SCI-MIT « = 5 lead to overexposure, while SCI-MIT
« = 2 maintains the input image almost unchanged. In contrast, our method achieves the best overall visual quality across
all three scenarios with varying illumination levels.



SCI-MIT SCI-LOL

SCI-MIT a=2 SCI-MIT a=5 SCI-MIT a=10 Ours

Figure 1. Comparison to SCI with varied hyper-parameters and training data.



1.3. Showcases of Using Different Priors in Qur Framework

We display results of replacing our prior with alternative representations: (1) Naive HS channels in the HSV color space. (2)
CIConv [9], a trainable prior similar to our . (3) The reflectance estimated by Retinex-based PairLIE [3]] In Fig. 2| HS
channels cause noticeable artifacts, while CIConv results in color errors. Reflectance in PairLIE introduces a yellow color

bias. Our model delivers the best visual quality.

Input HS channels CIConv Reflectance in Ours
PairLIE

Figure 2. Comparison to our framework combined with other kinds of priors.

1.4. Application: Bypass Decoder for Colorization

We employ a ControlNet-based colorization modeﬂ As shown in Fig. |3} our decoder excels in restoring fine details of the
clock while preserving the resulting color distribution. This experiment demonstrates the efficacy of our decoder beyond our

zero-reference low-light enhancement framework.

Test Image SD Consistency Ours

Figure 3. Effects of different decoders for colorization.

Thttps://github.com/lllyasviel/ControlNet-v1-1-nightly/pull/26



1.5. More Showcases

We show more subjective comparison results on LOL, MIT-Adobe FiveK and the unpaired set in Figs.[d}j9} Our model demon-
strates superior capability in avoiding both underexposure and overexposure, effectively suppressing noise while avoiding
artifacts such as black borders.

EnlightenGAN

SCI-MIT

SCI-LOL CLIP-LIT Ours Ground Truth

Figure 4. Low-light enhancement results on the LOL dataset. Our model is better at suppressing noise as well as improving the illumination.
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SCI-LOL CLIP-LIT Ours Ground Truth

Figure 5. Low-light enhancement results on the LOL dataset about non-uniform illuminaiton. PairLIE and Zero-DCE [4] generate
weird black edges. EnlightenGAN [[7] and CLIP-LIT increase noises and artifacts.
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Figure 6. Low-light enhancement results on the MIT-Adobe FiveK dataset. PairLIE [3]], EnlightenGAN [7], Zero-DCE [4]], Zero-
DCE++[10], RUAS[13] trained on MIT, SCI [13]] trained on MIT, and CLIP-LIT exhibit noise. NeRCo [20] compromises the structure
of the building, whereas our model successfully removes noise while preserving the building’s structure.
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Figure 7. Low-light enhancement results on the MIT-Adobe FiveK dataset about light sources. NeRCo [20] and RUAS [13] trained on
MIT suffer from over-exposure.



Zero-DCE++ RUAS-MIT SCI-MIT CLIP-LIT Ours

Figure 8. Low-light enhancement results on the unpaired datasets about pure dark area. PairLIE [3], Zero-DCE [4]], and CLIP-LIT [11]
cannot suppress noise.



Zero-DCE++ RUAS-MIT SCI-MIT CLIP-LIT Ours

Figure 9. Low-light enhancement results on the unpaired datasets. NeRCo [20], RUAS [13] and SCI [13] suffer from over-exposure.



2. Implementation Details
2.1. Our Framework Design

Prior-to-Image. The architecture of our framework is shown in Fig[T0[a) and Fig[TT} When computing the physical quadru-
ple prior from the input image, we introduce Gaussian noise with variance o, where o ranges within [0, 0.15]. Additionally,
we incorporate 0.25x signal-dependent Poisson noise. We further provide the code for computing O in Fig. [I0(b). Our O
can distinguish between different RGB orders and situations where two or three channels have the same values.

O(batch):
max_RGB
min_RGB

| Conv: In=3, Out=16, Kel=3, Pad=1 |

| Conv: In=16, Out=16, Kel=3, Pad-1 |

| Conv: In=16, Out=3, Kel-3, Pad-1 |

torch.argmax(batch, dim=1)

torch.argmin(batch, dim=1)

batch_ torch.flip(batch, dims=(1,))

max_RGB_
min_RGB_

2 - torch.argmax(batch_, dim=1)

5

- torch.argmin(batch_, dim=1)

Gaussian

RGB_order

torch.zeros(batch.shape, device=batch.device, dtype=batch.dtype)

RGB_order
RGB_order

RGB_order.scatter_(1,
RGB_order.scatter_(1,
RGB_order RGB_order.scatter_(1,

Convolve 7
‘
E/l
E AL | Clamp(min=-2.5, max=2.5)

| RGB_order RGB_order.scatter_(1,
return RGB_order

(a) Detailed architecture in Physical Quadruple Prior

max_RGB.unsqueeze(1), 0.5, reduce='a
max_RGB_.unsqueeze(1), 0.5, redu
min_RGB.unsqueeze(1), -0.5, reduce:

min_RGB_.unsqueeze(1), -0.5, reduce='add')

(b) Code for computing O

Figure 10. The detailed network for computing H, C, and W, as well as the PyTorch [16]] code for computing O.
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Figure 11. The detailed architecture of our prior-to-image framework.



We train it on both the COCO-2017 train set and an unlabeled set, totaling 241,690 images. Using a minibatch size of
8, we conduct training for approximately 140,000 steps, equivalent to around 5 epochs. Our learning rate is set at le-4, and
we utilize the ADAM optimizer [§]. The GPUs used are Tesla M40 with 24GB memory, while CPUs are Intel(R) Xeon(R)
CPU ES5-2690 v4 @ 2.60GHz. To fit the substantial model within limited GPU memory, we implement float16 precision
and employ DeepSpeed [17]. Training is conducted across two Tesla M40 GPUs, requiring approximately 40GB of GPU
memory in total.
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Figure 12. The detailed architecture for training our bypass decoder.

noise_1(image_tensor)

noise_poisson = torch.poisson(image_tensor)

noise_poisson_sign = torch.randint(low=0, high=2, size=image_tensor.shape) x 2 - 1
noise_poisson = noise_poisson * noise_poisson_sign * random.uniform(@, 0.25)
noise_gaussian = torch.randn(image_tensor.shape)

noise_gaussian = noise_gaussian x random.uniform(@, 0.15)

image_noise_tensor = image_tensor + noise_gaussian + noise_poisson

return torch.clamp(image_noise_tensor, 0, 1)

noise_2(image_tensor)

noise_gaussian = torch.randn(image_tensor.shape)

noise_gaussian = noise_gaussian * random.uniform(@, 0.3)

image_noise_tensor = image_tensor + transforms.functional.gaussian_blur(noise_gaussian, kernel_size=15)

return torch.clamp(image_noise_tensor, 0, 1)

noise_3(image_tensor)

noise_gaussian = torch.randn((image_tensor.shape[0], image_tensor.shape[1]//64, image_tensor.shape[2]//64))

noise_gaussian = noise_gaussian x random.uniform(@, 0.1)

noise_gaussian = noise_gaussian.unsqueeze(0)

noise_gaussian = torch.nn.functional.interpolate(noise_gaussian, scale_factor=64, mode='bicubic')[@]
image_noise_tensor = image_tensor + noise_gaussian

return torch.clamp(image_noise_tensor, 0, 1)

Figure 13. The code for applying noise to I to generate I.



During inference, we utilize the multistep DPM-Solver++ data prediction model [14]] with the order set to 3. This involves
sequentially employing one step of DPM-Solver-1, one step of multistep DPM-Solver-2, and eight steps of multistep DPM-
Solver-3. Using DPM-Solver++ instead of DDIM decreases the sampling steps from 50 to 10.

Bypass Decoder. The detailed architecture of our bypass decoder is illustrated in Fig.[I2} The encoding-related layers are
frozen. For generating I, we use a combination of three kinds of noises. The code for applying each kind of noise (noise_1I,
noise_2, noise_3) is provided in Fig. [13]

For training the bypass decoder, the model undergoes fine-tuning for 7,000 steps, employing a mini-batch size of 6,
operating at a resolution of 256. The learning rate is set to le-4, utilizing the ADAM optimizer([8].

Lightweight Version. Even with DPM-Solver++, 10 steps are still cambersome. In the pursuit of practicality, our framework
can create a more lightweight version.

We construct a lightweight U-net consisting of residual blocks and integrate transformer blocks from Restormer [23] at
the bottleneck. The detailed architecture is illustrated in Fig. [I4 To improve the adaptability of the attention to various
resolutions, we further insert positional embedding into the Multi-DConv Head Transposed Self-Attention. For a detailed
implementation of the Multi-DConv Head Transposed Self-Attention, please refer to [23].

To train this U-net, we generate 1.7k input-synthetic data pairs using our full framework. Among these samples, 1.2k are
from COCO [12], and 485 are from the LOL vl train set [18]. These samples are split, with 1.3k for training and the rest
for validation. The training objective is solely the L1 loss between the prediction of the lightweight U-net and that of the full
framework. Our learning rate is set at 1e-4, and we utilize the ADAM optimizer [8]. The training lasts for 200 epochs. The
GPU utilized is also a Tesla M40 with 24GB memory, and the CPUs are also Intel(R) Xeon(R) CPU E5-2690 v4 @ 2.60GHz.

1
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Figure 14. The detailed architecture of our lightweight U-net.

2.2. Compared Methods

For compared methods, we use the official codes and trained models released by the authors, which are listed in Tab.



Table 2. Code sources of compared methods.

Method | Link

RetinexNet [18]] https://github.com/weichen582/RetinexNet

KinD [25]] https://github.com/zhangyhuaee/KinD

KinD++ [26] https://github.com/zhangyhuaee/KinD_plus
URetinexNet [19] https://github.com/AndersonYong/URetinex—Net
Retinexformer [2] | https://github.com/caiyuanhaol998/Retinexformer
DiffLL [6] https://github.com/JianghaiSCU/Diffusion-Low-Light
ExCNet [24] https://zhanglijun95.github.io/ExCNet/
EnlightenGAN [7] | https://github.com/VITA-Group/EnlightenGAN

PairLIE [3] https://github.com/zhengifu/PairLIE

NeRCo [20]] https://github.com/Ysz2022/NeRCo

CLIP-LIT [11] https://github.com/ZhexinLiang/CLIP-LIT

Zero-DCE [4]] https://github.com/Li-Chongyi/Zero-DCE

Zero-DCE++ [10]] https://github.com/Li-Chongyi/Zero-DCE_extension
RUAS [13] https://github.com/KarelZhang/RUAS

SCI [15]] https://github.com/vis—opt—group/SCI
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