Zero-Reference Low-Light Enhancement via Physical Quadruple Priors
(Supplementary Material)

Wenjing Wang Huan Yang Jianlong Fu Jiaying Liu *
Peking University 01.AI Microsoft Research Asia Peking University

Contents

[I. More Experimental Results 2

.1. Computational Complexity Comparison| e 2

[.2. zfomRaratlve Knalxsm: SCT with Varied HXEer-parameters and lralnlng |3at§] 2

[.3. Showcases of Using Different Priors in Our Framework] 4

4. Application: Bypass Decoder for Colorization] 4

[L5. More Showeases| e 5

[2. Implementation Details| 11

[2.1. Our Framework Design| e e 11

[2.2. Compared Methods|. e e e e e 13

*Corresponding author. This work was supported in part by the National Natural Science Foundation of China under Grant 62332010, and in part by the
Key Laboratory of Science, Technology and Standard in Press Industry (Key Laboratory of Intelligent Press Media Technology).

1. More Experimental Results
1.1. Computational Complexity Comparison

We present the computational complexity (multiple-accumulate operations, MACs), network parameters, and processing time
for input images of resolution 512 x 512 x 3, coupled with the average low-light enhancement performance on LOL [[18} 21]
and MIT [[1]] in Tab.[I] These images are processed using a Tesla M40 with an Intel(R) Xeon(R) CPU E5-2690 v4 @ 2.60GHz.

Both our full and lightweight versions exhibit superior performance in enhancing low-light conditions compared to previ-
ous methods. Moreover, our lightweight version stands out by requiring fewer computational resources than most state-of-
the-art methods.

Table 1. Benchmarking results for low-light enhancement. Among unsupervised methods, we highlight the top-ranking scores in red, the
second in blue, the third in green. Additionally, we denote the training set used by each model. “LOL+” indicates a fusion of LOL and
other datasets.

Datasets ‘ Train Set ‘ Average on LOL [18}121]] and MIT [1] ‘ Computational Complexity
Metrics | | PSNRT SSIMt LPIPS| LOE] | MACs Params Time (s)
Retinex-Net [18§]] LOL 14.24 0.545 0.396 0.295 8728G 55521k 0.0931
KinD++ [26] LOL 16.20 0.656 0.365 0232 | 258.62G 827M 0.6935
KinD [23] LOL 17.46 0.785 0.162 0210 | 159.56G 8.02M 0.0964
Supervised URetinex-Net [19] LOL 17.51 0.794 0.143 0.216 2290G 340.11k 0.2477
Retinexformer [2] MIT 18.98 0.666 0.214 0.221 68.39 G 1.61 M 0.3096
Retinexformer [2] LOL 21.18 0.785 0.170 0.240 68.39 G 1.61M 0.3096
DiffLL [6] LOL+ 22.17 0.795 0.173 0.233 21.88G 22.08 M 0.3399
RUAS [13] FACE 10.03 0.411 0.528 0.345 950.8 M 3.438k 0.0189
RUAS [13] LOL 10.31 0.431 0.487 0.364 950.8 M 3.438k 0.0189
RUAS [13] MIT 11.58 0.536 0.324 0.282 950.8 M 3.438k 0.0189
SCI [15] LOL+ 12.40 0.553 0.336 0.238 95.16 M 0.258 k 0.0018
SCI [15] FACE 13.88 0.614 0.297 0.251 95.16 M 0.258 k 0.0018
ZeroDCE++ [10] own data 14.68 0.426 0.297 0.404 20.37M 10.56 k 0.0023
PairLIE [3] LOL+ 15.12 0.708 0.254 0.251 89.99G 34177k 0.0562
Unsupervised ExCNet [24] test images 15.25 0.587 0.288 0.246 - 8.27M 14.615
ZeroDCE [4] own data 15.59 0.649 0.258 0.243 20.92 G 79.42 k 0.0155
CLIP-LIT [11] own data 1591 0.653 0.265 0.257 73.04G 27879k 0.0543
EnlightenGAN [[7]] own data 15.93 0.719 0.253 0.245 65.88 G 8.64 M 0.0295
SCI [15] MIT 16.29 0.595 0.252 0.226 95.16 M 0.258 k 0.0018
NeRCo [20] LSRW [5] 18.50 0.744 0.237 0.262 8228G 2330M 0.9490
Ours Lightweight | COCO [12]+LOL 19.30 0.784 0.233 0.224 9.83 G 32736k 0.0238
Ours Full COCO [12] 19.41 0.797 0.182 0.234 - 1.313B 9.9616

1.2. Comparative Analysis: SCI with Varied Hyper-parameters and Training Data

We present low-light enhancement results of SCI [[15] trained on different datasets: LOL [18]], MIT [1]], and FACE [22]. The
training loss of SCI is given by Ly = aLy + BLs; more details can be found in [15]. We also demonstrate results under
various « values with 5 = 1.

As shown in Fig.[] all versions of SCI struggle to enhance the extremely dark image in the first row. In the unbalanced
case in the second row, all SCI versions either overly enhance the sky or fail to enhance the tree. In the daytime scenario in
the third row, SCI-MIT, SCI-LOL, SCI-FACE, SCI-MIT « = 10, and SCI-MIT « = 5 lead to overexposure, while SCI-MIT
« = 2 maintains the input image almost unchanged. In contrast, our method achieves the best overall visual quality across
all three scenarios with varying illumination levels.

SCI-MIT SCI-LOL

SCI-MIT a=2 SCI-MIT a=5 SCI-MIT a=10 Ours

Figure 1. Comparison to SCI with varied hyper-parameters and training data.

1.3. Showcases of Using Different Priors in Qur Framework

We display results of replacing our prior with alternative representations: (1) Naive HS channels in the HSV color space. (2)
CIConv [9], a trainable prior similar to our . (3) The reflectance estimated by Retinex-based PairLIE [3]] In Fig. 2| HS
channels cause noticeable artifacts, while CIConv results in color errors. Reflectance in PairLIE introduces a yellow color

bias. Our model delivers the best visual quality.

Input HS channels CIConv Reflectance in Ours
PairLIE

Figure 2. Comparison to our framework combined with other kinds of priors.

1.4. Application: Bypass Decoder for Colorization

We employ a ControlNet-based colorization modeﬂ As shown in Fig. |3} our decoder excels in restoring fine details of the
clock while preserving the resulting color distribution. This experiment demonstrates the efficacy of our decoder beyond our

zero-reference low-light enhancement framework.

Test Image SD Consistency Ours

Figure 3. Effects of different decoders for colorization.

Thttps://github.com/lllyasviel/ControlNet-v1-1-nightly/pull/26

1.5. More Showcases

We show more subjective comparison results on LOL, MIT-Adobe FiveK and the unpaired set in Figs.[d}j9} Our model demon-
strates superior capability in avoiding both underexposure and overexposure, effectively suppressing noise while avoiding
artifacts such as black borders.

EnlightenGAN

SCI-MIT

SCI-LOL CLIP-LIT Ours Ground Truth

Figure 4. Low-light enhancement results on the LOL dataset. Our model is better at suppressing noise as well as improving the illumination.

Input PairLIE NeRCo EnlightenGAN

Zero-DCE++ RUAS-LOL SCI-MIT

SCI-LOL CLIP-LIT Ours Ground Truth

Figure 5. Low-light enhancement results on the LOL dataset about non-uniform illuminaiton. PairLIE and Zero-DCE [4] generate
weird black edges. EnlightenGAN [[7] and CLIP-LIT increase noises and artifacts.

j!!"ﬂ(’:- %

.- _
44
791

Input PairLIE NeRCo EnlightenGAN Zero-DCE

&
-
=

4%

Zero-DCE++ RUAS-MIT SCI-MIT CLIP-LIT Ours

Figure 6. Low-light enhancement results on the MIT-Adobe FiveK dataset. PairLIE [3]], EnlightenGAN [7], Zero-DCE [4]], Zero-
DCE++[10], RUAS[13] trained on MIT, SCI [13]] trained on MIT, and CLIP-LIT exhibit noise. NeRCo [20] compromises the structure
of the building, whereas our model successfully removes noise while preserving the building’s structure.

PairLIE Zero-DCE

!

Zero-DCE++ RUAS-MIT SCI-MIT CLIP-LIT Ours

Figure 7. Low-light enhancement results on the MIT-Adobe FiveK dataset about light sources. NeRCo [20] and RUAS [13] trained on
MIT suffer from over-exposure.

Zero-DCE++ RUAS-MIT SCI-MIT CLIP-LIT Ours

Figure 8. Low-light enhancement results on the unpaired datasets about pure dark area. PairLIE [3], Zero-DCE [4]], and CLIP-LIT [11]
cannot suppress noise.

Zero-DCE++ RUAS-MIT SCI-MIT CLIP-LIT Ours

Figure 9. Low-light enhancement results on the unpaired datasets. NeRCo [20], RUAS [13] and SCI [13] suffer from over-exposure.

2. Implementation Details
2.1. Our Framework Design

Prior-to-Image. The architecture of our framework is shown in Fig[T0[a) and Fig[TT} When computing the physical quadru-
ple prior from the input image, we introduce Gaussian noise with variance o, where o ranges within [0, 0.15]. Additionally,
we incorporate 0.25x signal-dependent Poisson noise. We further provide the code for computing O in Fig. [I0(b). Our O
can distinguish between different RGB orders and situations where two or three channels have the same values.

O(batch):
max_RGB
min_RGB

| Conv: In=3, Out=16, Kel=3, Pad=1 |

| Conv: In=16, Out=16, Kel=3, Pad-1 |

| Conv: In=16, Out=3, Kel-3, Pad-1 |

torch.argmax(batch, dim=1)

torch.argmin(batch, dim=1)

batch_ torch.flip(batch, dims=(1,))

max_RGB_
min_RGB_

2 - torch.argmax(batch_, dim=1)

5

- torch.argmin(batch_, dim=1)

Gaussian

RGB_order

torch.zeros(batch.shape, device=batch.device, dtype=batch.dtype)

RGB_order
RGB_order

RGB_order.scatter_(1,
RGB_order.scatter_(1,
RGB_order RGB_order.scatter_(1,

Convolve 7
‘
E/l
E AL | Clamp(min=-2.5, max=2.5)

| RGB_order RGB_order.scatter_(1,
return RGB_order

(a) Detailed architecture in Physical Quadruple Prior

max_RGB.unsqueeze(1), 0.5, reduce='a
max_RGB_.unsqueeze(1), 0.5, redu
min_RGB.unsqueeze(1), -0.5, reduce:

min_RGB_.unsqueeze(1), -0.5, reduce='add')

(b) Code for computing O

Figure 10. The detailed network for computing H, C, and W, as well as the PyTorch [16]] code for computing O.

$¥ Conv: In=4, Out=320, Kel=3, Pad=1

$¥ SD Encoder Block-1

¥ SD Encoder Block-8

¥ SD Middle Block

3% SD Decoder Block-8

|

$¥ SD Decoder Block-2

3k SD Decoder Block-1

¥ GroupNorm + SiLU+ Conv2d

4

Conv: In=4, Out=320, Kel=3, Pad=1

Physical Quadruple Prior

Input Block

1

h(] '—| Zero Conv

h1 SD Encoder Block-1

h2 SD Encoder Block-2

h3 Downsample

hy SD Encoder Block-3

hS SD Encoder Block-4

h6 Downsample

h7 SD Encoder Block-5

h
hg Downsample

h1 0 SD Encoder Block-7

hy, SD Encoder Block-8
hyy Zero Conv SD Middle Block

| Conv: In=6, Out=16, Kel=3, Pad=1

SiLU

i

[Conv: In=16, Out=16, Kel=3, Pad=1

SiLU

i

| Conv: In=16, Out=32, Kel=3, Pad=1

SiLU

i

[Conv: In=32, Out=32, Kel=3, Pad=1
v

SiLU

| Conv: In=32, Out=96, Kel=3, Pad=1

v
SiLU

| Conv: In=96, Out=96, Kel=3, Pad=1

SiLU

i

[Conv: In=96, Out=256, Kel=3, Pad=1
k2

SiLU

[Conv: In=256, Out=320, Kel=3, Pad=1 |

Figure 11. The detailed architecture of our prior-to-image framework.

We train it on both the COCO-2017 train set and an unlabeled set, totaling 241,690 images. Using a minibatch size of
8, we conduct training for approximately 140,000 steps, equivalent to around 5 epochs. Our learning rate is set at le-4, and
we utilize the ADAM optimizer [§]. The GPUs used are Tesla M40 with 24GB memory, while CPUs are Intel(R) Xeon(R)
CPU ES5-2690 v4 @ 2.60GHz. To fit the substantial model within limited GPU memory, we implement float16 precision
and employ DeepSpeed [17]. Training is conducted across two Tesla M40 GPUs, requiring approximately 40GB of GPU
memory in total.

-9
>
1

—9
51
3, Stride=2
51
5
51

128
56
~

>

2

2

bl

=1
3, Stride
=51
512
=32
=3, Pad
=1

8, Kel

56, Out
56, Out:

128, Out
128, Out
512, Out:
512, Out:
512, Out:
512, Out=512

=2

=)
512, Kel
In:

12, Out=8, Kel:
=8, Out

5
Gaussian Sample

Attention: Ch:

GroupNorm: Groups

ResBlock: In:
ResBlock: In
ResBlock: In:
ResBlock: In
Out:
ResBlock: In=2.
Out:
ResBloc
ResBlock: In:
ResBlock: In:
ResBlock: In:

c]
v
)
o
Il
=
=
(©]
I
=]
&l
=
]
o

Conv: In:
Conv: In
Conv: In

3
=3

=1
=3

1

1
1

1
1

3, Kel=3, Pad=
=3, Pa
=3, Pa
=32

128, Out=128
256, Out=128
=3, Pad=1
=256, Kel
256, Out=256
256, Out=256
=256
512, Kel=3, Pa
512, Out=512
512, Out=512
512, Kel=3, Pad:
512, Out=512
512, Out=512
512, Out=512
=512
512, Out=512
512, Kel=3, Pad:
=1

=256, Kel

X % sigmoid(x)
u

32, Out

GroupNorm: Groups:
=384,
768, Out
=4, Out

Conv: In=4, Out=4, Kel:

ResBlock: In=128, Out=128
ResBlock: In=512, Out=512

ResBlock: In=512, Out
ResBlock: In=512, Out:

ResBlock: In:
ResBlock: In:
ResBlock: In:
ResBlock: In:
ResBlock: In:
ResBlock: In:
ResBlock: In:
ResBlock: In:
ResBlock: In:

Conv: In=6, Out=32, Kel:
ResBlock: In:

Conv: In=128, Out=3, Kel:

Conv: In

Conv: Ins

Conv: In=1024, Out:
Conv: In:

Conv: In
Upsample 2x + Conv: In=Out=512, Kel

Upsample 2x + Conv: In=Out
Upsample 2x + Conv: In=Out=512, Kel

Figure 12. The detailed architecture for training our bypass decoder.

noise_1(image_tensor)

noise_poisson = torch.poisson(image_tensor)

noise_poisson_sign = torch.randint(low=0, high=2, size=image_tensor.shape) x 2 - 1
noise_poisson = noise_poisson * noise_poisson_sign * random.uniform(@, 0.25)
noise_gaussian = torch.randn(image_tensor.shape)

noise_gaussian = noise_gaussian x random.uniform(@, 0.15)

image_noise_tensor = image_tensor + noise_gaussian + noise_poisson

return torch.clamp(image_noise_tensor, 0, 1)

noise_2(image_tensor)

noise_gaussian = torch.randn(image_tensor.shape)

noise_gaussian = noise_gaussian * random.uniform(@, 0.3)

image_noise_tensor = image_tensor + transforms.functional.gaussian_blur(noise_gaussian, kernel_size=15)

return torch.clamp(image_noise_tensor, 0, 1)

noise_3(image_tensor)

noise_gaussian = torch.randn((image_tensor.shape[0], image_tensor.shape[1]//64, image_tensor.shape[2]//64))

noise_gaussian = noise_gaussian x random.uniform(@, 0.1)

noise_gaussian = noise_gaussian.unsqueeze(0)

noise_gaussian = torch.nn.functional.interpolate(noise_gaussian, scale_factor=64, mode='bicubic')[@]
image_noise_tensor = image_tensor + noise_gaussian

return torch.clamp(image_noise_tensor, 0, 1)

Figure 13. The code for applying noise to I to generate I.

During inference, we utilize the multistep DPM-Solver++ data prediction model [14]] with the order set to 3. This involves
sequentially employing one step of DPM-Solver-1, one step of multistep DPM-Solver-2, and eight steps of multistep DPM-
Solver-3. Using DPM-Solver++ instead of DDIM decreases the sampling steps from 50 to 10.

Bypass Decoder. The detailed architecture of our bypass decoder is illustrated in Fig.[I2} The encoding-related layers are
frozen. For generating I, we use a combination of three kinds of noises. The code for applying each kind of noise (noise_1I,
noise_2, noise_3) is provided in Fig. [13]

For training the bypass decoder, the model undergoes fine-tuning for 7,000 steps, employing a mini-batch size of 6,
operating at a resolution of 256. The learning rate is set to le-4, utilizing the ADAM optimizer([8].

Lightweight Version. Even with DPM-Solver++, 10 steps are still cambersome. In the pursuit of practicality, our framework
can create a more lightweight version.

We construct a lightweight U-net consisting of residual blocks and integrate transformer blocks from Restormer [23] at
the bottleneck. The detailed architecture is illustrated in Fig. [I4 To improve the adaptability of the attention to various
resolutions, we further insert positional embedding into the Multi-DConv Head Transposed Self-Attention. For a detailed
implementation of the Multi-DConv Head Transposed Self-Attention, please refer to [23].

To train this U-net, we generate 1.7k input-synthetic data pairs using our full framework. Among these samples, 1.2k are
from COCO [12], and 485 are from the LOL vl train set [18]. These samples are split, with 1.3k for training and the rest
for validation. The training objective is solely the L1 loss between the prediction of the lightweight U-net and that of the full
framework. Our learning rate is set at 1e-4, and we utilize the ADAM optimizer [8]. The training lasts for 200 epochs. The
GPU utilized is also a Tesla M40 with 24GB memory, and the CPUs are also Intel(R) Xeon(R) CPU E5-2690 v4 @ 2.60GHz.

1

Conv: In=3, Out=8, Kel=3, Pad=1 Restomer TransformerBlock

ResBlock x 2: Ch=8, Kel=3, Pad=1

Downsample: Ch=8

Multi-DConv Head

Conv: In=K, Out=K, Kel=3, Pad=1 Transposed Self-Attention

ResBlock x 2: Ch=16, Kel=3

Downsample: Ch=16

ResBlock x 2: Ch=32, Kel=3, Pad=1 w=¥i i .
LayerNorm

Downsample: Ch=32 : :
Downsample: Ch=K : : Gated-Dconv FeedForward

Restomer TransformerBlock x 2
Conv: In=K, Out=K//2, Kel=3, Pad=1

Upsample: Ch=64
ResBlock x 2: Ch=32, Kel=3, Pad=1

Upsample: Ch=32
ResBlock x 2: Ch=16, Kel=3, Pad=1

Upsample: Ch=16 (w/o the second Conv)

ResBlock x 2: Ch=16, Kel=3, Pad=1

ResBlock x 2: Ch=16, Kel=3, Pad=1

PixelShuffle

Conv: In=K, Out=K

/: In=170, Out=64, Kel=1

Conv: In=16, Out=3, Kel=3, Pad=1

Figure 14. The detailed architecture of our lightweight U-net.

2.2. Compared Methods

For compared methods, we use the official codes and trained models released by the authors, which are listed in Tab.

Table 2. Code sources of compared methods.

Method | Link

RetinexNet [18]] https://github.com/weichen582/RetinexNet

KinD [25]] https://github.com/zhangyhuaee/KinD

KinD++ [26] https://github.com/zhangyhuaee/KinD_plus
URetinexNet [19] https://github.com/AndersonYong/URetinex—Net
Retinexformer [2] | https://github.com/caiyuanhaol998/Retinexformer
DiffLL [6] https://github.com/JianghaiSCU/Diffusion-Low-Light
ExCNet [24] https://zhanglijun95.github.io/ExCNet/
EnlightenGAN [7] | https://github.com/VITA-Group/EnlightenGAN

PairLIE [3] https://github.com/zhengifu/PairLIE

NeRCo [20]] https://github.com/Ysz2022/NeRCo

CLIP-LIT [11] https://github.com/ZhexinLiang/CLIP-LIT

Zero-DCE [4]] https://github.com/Li-Chongyi/Zero-DCE

Zero-DCE++ [10]] https://github.com/Li-Chongyi/Zero-DCE_extension
RUAS [13] https://github.com/KarelZhang/RUAS

SCI [15]] https://github.com/vis—opt—group/SCI

References

(1]
(2]
(3]
(4]
(5]
(6]
(7]

(8]
(9]

[10]
(11]
[12]
(13]
(14]
[15]

[16]

(17]

Vladimir Bychkovsky, Sylvain Paris, Eric Chan, and Frédo Durand. Learning photographic global tonal adjustment with a database
of input / output image pairs. In CVPR, 2011.

Yuanhao Cai, Hao Bian, Jing Lin, Haogian Wang, Radu Timofte, and Yulun Zhang. Retinexformer: One-stage retinex-based trans-
former for low-light image enhancement. In /ICCV, 2023.

Zhenqi Fu, Yan Yang, Xiaotong Tu, Yue Huang, Xinghao Ding, and Kai-Kuang Ma. Learning a simple low-light image enhancer
from paired low-light instances. In CVPR, 2023.

Chunle Guo, Chongyi Li, Jichang Guo, Chen Change Loy, Junhui Hou, Sam Kwong, and Runmin Cong. Zero-reference deep curve
estimation for low-light image enhancement. In CVPR, 2020.

Jiang Hai, Zhu Xuan, Ren Yang, Yutong Hao, Fengzhu Zou, Fang Lin, and Songchen Han. R2RNet: Low-light image enhancement
via real-low to real-normal network. Journal of Visual Communication and Image Representation, 90:103712, 2023.

Hai Jiang, Ao Luo, Songchen Han, Haoqgiang Fan, and Shuaicheng Liu. Low-light image enhancement with wavelet-based diffusion
models. In Siggraph Asia, 2023.

Yifan Jiang, Xinyu Gong, Ding Liu, Yu Cheng, Chen Fang, Xiaohui Shen, Jianchao Yang, Pan Zhou, and Zhangyang Wang. Enlight-
enGAN: Deep light enhancement without paired supervision. /EEE TIP, 30:2340-2349, 2021.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv, 2014.

Attila Lengyel, Sourav Garg, Michael Milford, and Jan C. van Gemert. Zero-shot domain adaptation with a physics prior. In ICCV,
2021.

Chongyi Li, Chunle Guo, and Chen Change Loy. Learning to enhance low-light image via zero-reference deep curve estimation.
IEEE TPAMI, 44(8):4225-4238, 2021.

Zhexin Liang, Chongyi Li, Shangchen Zhou, Ruicheng Feng, and Chen Change Loy. Iterative prompt learning for unsupervised
backlit image enhancement. In /ICCV, 2023.

Tsung-Yi Lin, Michael Maire, Serge J. Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr Dolldr, and C. Lawrence Zitnick.
Microsoft COCO: Common objects in context. In ECCV, 2014.

Risheng Liu, Long Ma, Jiaao Zhang, Xin Fan, and Zhongxuan Luo. Retinex-inspired unrolling with cooperative prior architecture
search for low-light image enhancement. In CVPR, 2021.

Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu. Dpm-solver++: Fast solver for guided sampling of
diffusion probabilistic models. arXiv, 2022.

Long Ma, Tengyu Ma, Risheng Liu, Xin Fan, and Zhongxuan Luo. Toward fast, flexible, and robust low-light image enhancement.
In CVPR, 2022.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia
Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward Z. Yang, Zachary DeVito, Martin Raison, Alykhan Tejani,
Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance
deep learning library. In NeurIPS, 2019.

Jeff Rasley, Samyam Rajbhandari, Olatunji Ruwase, and Yuxiong He. Deepspeed: System optimizations enable training deep learning
models with over 100 billion parameters. In KDD, 2020.

https://github.com/weichen582/RetinexNet
https://github.com/zhangyhuaee/KinD
https://github.com/zhangyhuaee/KinD_plus
https://github.com/AndersonYong/URetinex-Net
https://github.com/caiyuanhao1998/Retinexformer
https://github.com/JianghaiSCU/Diffusion-Low-Light
https://zhanglijun95.github.io/ExCNet/
https://github.com/VITA-Group/EnlightenGAN
https://github.com/zhenqifu/PairLIE
https://github.com/Ysz2022/NeRCo
https://github.com/ZhexinLiang/CLIP-LIT
https://github.com/Li-Chongyi/Zero-DCE
https://github.com/Li-Chongyi/Zero-DCE_extension
https://github.com/KarelZhang/RUAS
https://github.com/vis-opt-group/SCI

(18]
(19]

[20]
(21]

[22]

(23]
[24]

[25]
[26]

Chen Wei, Wenjing Wang, Wenhan Yang, and Jiaying Liu. Deep retinex decomposition for low-light enhancement. In BMVC, 2018.
Wenhui Wu, Jian Weng, Pingping Zhang, Xu Wang, Wenhan Yang, and Jianmin Jiang. Uretinex-net: Retinex-based deep unfolding
network for low-light image enhancement. In CVPR, 2022.

Shuzhou Yang, Moxuan Ding, Yanmin Wu, Zihan Li, and Jian Zhang. Implicit neural representation for cooperative low-light image
enhancement. In /CCV, 2023.

Wenhan Yang, Shiqi Wang, Yuming Fang, Yue Wang, and Jiaying Liu. From fidelity to perceptual quality: A semi-supervised
approach for low-light image enhancement. In CVPR, 2020.

Wenhan Yang, Ye Yuan, Wenqi Ren, Jiaying Liu, Walter J Scheirer, Zhangyang Wang, Taiheng Zhang, Qiaoyong Zhong, Di Xie,
Shiliang Pu, et al. Advancing image understanding in poor visibility environments: A collective benchmark study. IEEE TIP, 29:
5737-5752, 2020.

Syed Waqas Zamir, Aditya Arora, Salman Khan, Munawar Hayat, Fahad Shahbaz Khan, and Ming-Hsuan Yang. Restormer: Efficient
transformer for high-resolution image restoration. In CVPR, 2022.

Lin Zhang, Lijun Zhang, Xinyu Liu, Ying Shen, Shaoming Zhang, and Shengjie Zhao. Zero-shot restoration of back-lit images using
deep internal learning. In ACM MM, 2019.

Yonghua Zhang, Jiawan Zhang, and Xiaojie Guo. Kindling the darkness: A practical low-light image enhancer. In ACM MM, 2019.
Yonghua Zhang, Xiaojie Guo, Jiayi Ma, Wei Liu, and Jiawan Zhang. Beyond brightening low-light images. IJCV, 129(4):1013-1037,
2021.

	. More Experimental Results
	. Computational Complexity Comparison
	. Comparative Analysis: SCI with Varied Hyper-parameters and Training Data
	. Showcases of Using Different Priors in Our Framework
	. Application: Bypass Decoder for Colorization
	. More Showcases

	. Implementation Details
	. Our Framework Design
	. Compared Methods

